Solution to Problem 239 Statically Indeterminate

or Register to Discuss This!

Problem 239
The rigid platform in Fig. P-239 has negligible mass and rests on two steel bars, each 250.00 mm long. The center bar is aluminum and 249.90 mm long. Compute the stress in the aluminum bar after the center load P = 400 kN has been applied. For each steel bar, the area is 1200 mm2 and E = 200 GPa. For the aluminum bar, the area is 2400 mm2 and E = 70 GPa.
 

Figure 239

 

Solution to Problem 238 Statically Indeterminate

or Register to Discuss This!

Problem 238
The lower ends of the three bars in Fig. P-238 are at the same level before the uniform rigid block weighing 40 kips is attached. Each steel bar has a length of 3 ft, and area of 1.0 in.2, and E = 29 × 106 psi. For the bronze bar, the area is 1.5 in.2 and E = 12 × 106 psi. Determine (a) the length of the bronze bar so that the load on each steel bar is twice the load on the bronze bar, and (b) the length of the bronze that will make the steel stress twice the bronze stress.
 

Rigid bar supported by three rods

 

Solution to Problem 236 Statically Indeterminate

or Register to Discuss This!

Problem 236
A rigid block of mass M is supported by three symmetrically spaced rods as shown in Fig. P-236. Each copper rod has an area of 900 mm2; E = 120 GPa; and the allowable stress is 70 MPa. The steel rod has an area of 1200 mm2; E = 200 GPa; and the allowable stress is 140 MPa. Determine the largest mass M which can be supported.
 

Block supported by three rods

 

Solution to Problem 235 Statically Indeterminate

or Register to Discuss This!

Problem 235
A timber column, 8 in. × 8 in. in cross section, is reinforced on each side by a steel plate 8 in. wide and t in. thick. Determine the thickness t so that the column will support an axial load of 300 kips without exceeding a maximum timber stress of 1200 psi or a maximum steel stress of 20 ksi. The moduli of elasticity are 1.5 × 106 psi for timber, and 29 × 106 psi for steel.
 

Solution to Problem 228 Biaxial Deformation

or Register to Discuss This!

Problem 228
A 6-in.-long bronze tube, with closed ends, is 3 in. in diameter with a wall thickness of 0.10 in. With no internal pressure, the tube just fits between two rigid end walls. Calculate the longitudinal and tangential stresses for an internal pressure of 6000 psi. Assume ν = 1/3 and E = 12 × 106 psi.
 

Solution 228
$\varepsilon = \dfrac{\sigma_x}{E} - \nu \dfrac{\sigma_y}{E} = 0$

Pages