# Solution to Problem 214 Axial Deformation

# Solution to Problem 213 Axial Deformation

# Solution to Problem 212 Axial Deformation

**Problem 212**

The rigid bar ABC shown in Fig. P-212 is hinged at A and supported by a steel rod at B. Determine the largest load P that can be applied at C if the stress in the steel rod is limited to 30 ksi and the vertical movement of end C must not exceed 0.10 in.

# Solution to Problem 211 Axial Deformation

**Problem 211**

A bronze bar is fastened between a steel bar and an aluminum bar as shown in Fig. p-211. Axial loads are applied at the positions indicated. Find the largest value of P that will not exceed an overall deformation of 3.0 mm, or the following stresses: 140 MPa in the steel, 120 MPa in the bronze, and 80 MPa in the aluminum. Assume that the assembly is suitably braced to prevent buckling. Use E_{st} = 200 GPa, E_{al} = 70 GPa, and E_{br} = 83 GPa.

# Solution to Problem 210 Axial Deformation

# Solution to Problem 209 Axial Deformation

# Solution to Problem 208 Axial Deformation

**Problem 208**

A steel tire, 10 mm thick, 80 mm wide, and 1500.0 mm inside diameter, is heated and shrunk onto a steel wheel 1500.5 mm in diameter. If the coefficient of static friction is 0.30, what torque is required to twist the tire relative to the wheel? Neglect the deformation of the wheel. Use E = 200 GPa.

# Solution to Problem 207 Axial Deformation

**Problem 207**

A steel wire 30 ft long, hanging vertically, supports a load of 500 lb. Neglecting the weight of the wire, determine the required diameter if the stress is not to exceed 20 ksi and the total elongation is not to exceed 0.20 in. Assume E = 29 × 10^{6} psi.

# Solution to Problem 206 Axial Deformation

**Problem 206**

A steel rod having a cross-sectional area of 300 mm^{2} and a length of 150 m is suspended vertically from one end. It supports a tensile load of 20 kN at the lower end. If the unit mass of steel is 7850 kg/m^{3} and E = 200 × 10^{3} MN/m^{2}, find the total elongation of the rod.