Problem 512 | Friction

Problem 512
A homogeneous block of weight W rests upon the incline shown in Fig. P-512. If the coefficient of friction is 0.30, determine the greatest height h at which a force P parallel to the incline may be applied so that the block will slide up the incline without tipping over.
 

Tall block on an inclined plane

 

Problem 509 | Friction

Problem 509
The blocks shown in Fig. P-509 are connected by flexible, inextensible cords passing over frictionless pulleys. At A the coefficients of friction are μs = 0.30 and μk = 0.20 while at B they are μs = 0.40 and μk = 0.30. Compute the magnitude and direction of the friction force acting on each block.
 

Two blocks on two inclined planes connected by cords

 

Problem 507 | Friction

Problem 507
The 2225-N block shown in Fig. P-507 is in contact with 45° incline. The coefficient of static friction is 0.25. Compute the value of the horizontal force P necessary to (a) just start the block up the incline or (b) just prevent motion down the incline. (c) If P = 1780 N, what is the amount and direction of the friction force?
 

Block on an incline pushed by horizontal force

 

Problem 506 | Friction

Problem 506
A 400 lb block is resting on a rough horizontal surface for which the coefficient of friction is 0.40. Determine the force P required to cause motion to impend if applied to the block (a) horizontally or (b) downward at 30° with the horizontal. (c) What minimum force is required to start motion?
 

Friction

Friction is the contact resistance exerted by one body when the second body moves or tends to move past the first body. Friction is a retarding force that always acts opposite to the motion or to the tendency to move.
 

Pages