# Problem 514 | Friction

**Problem 514**

The 10-kN cylinder shown in Fig. P-514 is held at rest on the 30° incline by a weight P suspended from a cord wrapped around the cylinder. If slipping impends, determine P and the coefficient of friction.

**Problem 514**

The 10-kN cylinder shown in Fig. P-514 is held at rest on the 30° incline by a weight P suspended from a cord wrapped around the cylinder. If slipping impends, determine P and the coefficient of friction.

**Problem 513**

In Fig. P-512, the homogeneous block weighs 300 kg and the coefficient of friction is 0.45. If h = 50 cm, determine the force P to cause motion to impend.

**Problem 512**

A homogeneous block of weight W rests upon the incline shown in Fig. P-512. If the coefficient of friction is 0.30, determine the greatest height h at which a force P parallel to the incline may be applied so that the block will slide up the incline without tipping over.

**Problem 511**

Find the least value of P required to cause the system of blocks shown in Fig. P-511 to have impending motion to the left. The coefficient of friction under each block is 0.20.

**Problem 510**

What weight W is necessary to start the system of blocks shown in Fig. P-510 moving to the right? The coefficient of friction is 0.10 and the pulleys are assumed to be frictionless.

**Problem 509**

The blocks shown in Fig. P-509 are connected by flexible, inextensible cords passing over frictionless pulleys. At A the coefficients of friction are μ_{s} = 0.30 and μ_{k} = 0.20 while at B they are μ_{s} = 0.40 and μ_{k} = 0.30. Compute the magnitude and direction of the friction force acting on each block.

**Problem 508**

The 200-lb block shown in Fig. P-508 has impending motion up the plane caused by the horizontal force of 400 lb. Determine the coefficient of static friction between the contact surfaces.

**Problem 507**

The 2225-N block shown in Fig. P-507 is in contact with 45° incline. The coefficient of static friction is 0.25. Compute the value of the horizontal force P necessary to (a) just start the block up the incline or (b) just prevent motion down the incline. (c) If P = 1780 N, what is the amount and direction of the friction force?

**Problem 506**

A 400 lb block is resting on a rough horizontal surface for which the coefficient of friction is 0.40. Determine the force P required to cause motion to impend if applied to the block (a) horizontally or (b) downward at 30° with the horizontal. (c) What minimum force is required to start motion?

Friction is the contact resistance exerted by one body when the second body moves or tends to move past the first body. Friction is a retarding force that always acts opposite to the motion or to the tendency to move.

SPONSORED LINKS

- Differential Equations
- solid mensuration: foundation of a barn
- Please Answer
- Engineering Mechanics -Dynamics
- detailed solution please? total energy of rotating rod
- DE: 2xy dx + (y^2 - x^2) dy = 0
- DE: 2xy dx + (y^2 + x^2) dy = 0
- equations of order one: (1 - xy)^2 dx + [ y^2 + x^2 (1 - xy)^(-2) ] dy = 0
- DE Order one: (xy^2 + x - 2y + 3) dx + x^2 ydy = 2(x + y) dy
- exact DE: [ 2x + y cos (x^2) - 2xy + 1 ] dx + [ sin (x^2) - x^2 ] dy = 0