algebra

Relationship Between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers

For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.
 

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship between the three is given by the formula
 

$AM \times HM = GM^2$

 

Below is the derivation of this relationship.
 

Derivation of Sum of Finite and Infinite Geometric Progression

Geometric Progression, GP
Geometric progression (also known as geometric sequence) is a sequence of numbers where the ratio of any two adjacent terms is constant. The constant ratio is called the common ratio, r of geometric progression. Each term therefore in geometric progression is found by multiplying the previous one by r.
 

Eaxamples of GP:

  • 3, 6, 12, 24, … is a geometric progression with r = 2
  • 10, -5, 2.5, -1.25, … is a geometric progression with r = -1/2

 

Derivation of Sum of Arithmetic Progression

Arithmetic Progression, AP
Definition

Arithmetic Progression (also called arithmetic sequence), is a sequence of numbers such that the difference between any two consecutive terms is constant. Each term therefore in an arithmetic progression will increase or decrease at a constant value called the common difference, d.
 

Examples of arithmetic progression are:

  • 2, 5, 8, 11,... common difference = 3
  • 23, 19, 15, 11,... common difference = -4

 

Derivation of Formulas
Let

Sum and Product of Roots

The quadratic formula
 

$x = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$

 

give the roots of a quadratic equation which may be real or imaginary. The ± sign in the radical indicates that
 

$x_1 = \dfrac{-b + \sqrt{b^2-4ac}}{2a}$   and   $x_2 = \dfrac{-b - \sqrt{b^2-4ac}}{2a}$

 

where x1 and x2 are the roots of the quadratic equation ax2 + bx + c = 0. The sum of roots x1 + x2 and the product of roots x1·x2 are common to problems involving quadratic equation.
 

Derivation of Quadratic Formula

The roots of a quadratic equation ax2 + bx + c = 0 is given by the quadratic formula
 

$x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

 

The derivation of this formula can be outlined as follows:

  1. Divide both sides of the equation ax2 + bx + c = 0 by a.
  2. Transpose the quantity c/a to the right side of the equation.
  3. Complete the square by adding b2 / 4a2 to both sides of the equation.
  4. Factor the left side and combine the right side.
  5. Extract the square-root of both sides of the equation.
  6. Solve for x by transporting the quantity b / 2a to the right side of the equation.
  7. Combine the right side of the equation to get the quadratic formula.

See the derivation below.