Problem 915 | Combined Axial and Bending

Problem 915
For the structure in Problem 914, compute the maximum tensile stress developed in bar CB.
 

914-two-bar-structure.gif

 

Problem 914 | Combined Axial and Bending

Problem 914
The structure shown in Figure P-914 is hinged to fixed is hinged to fixed supports at A and C. Assume that the pin connections at A, B, and C are frictionless. The bars are each 4 in. by 4 in. in section. Compute the maximum compressive stress developed in bar AD.
 

914-two-bar-structure.gif

 

Inner Circle Reading of the Double Vernier of a Transit

Problem
Figure P-SF01 is a double vernier of a transit and the dashed line indicate the two sets of coincident lines. What is the reading of the inner circle?
 

01-008-vernier-circle-reading.gif

 

A.   175° 42' C.   184° 18'
B.   193° 8' D.   181° 3'

 

Problem 912 | Combined Axial and Bending

Problem 912
Compute the stresses at A and B on the link loaded as shown in Figure P-912 if P = 9000 lb and F = 3000 lb.
 

912-rectangular-link.gif

 

Problem 911 | Combined Axial and Bending

Problem 911
A concrete dam has the profile shown in Figure P-911. If the density of concrete is 2400 kg/m3 and that of water is 1000 kg/m3, determine the maximum compressive stress at section m-n if the depth of the water behind the dam is h = 15 m.
 

911-gravity-dam.gif

 

Length of Parabolic Sag Curve with Given Change in Grade Per Station

Problem
A grade of -5% is followed by a grade of 1%, the grades intersecting at the vertex (Sta. 10 + 060). The change of grade is restricted to 0.4% in 20 m. Compute the length of the vertical parabolic sag curve in meters.

A.   360 m C.   300 m
B.   320 m D.   340 m

 

Cross-Sectional Dimensions of Steel Rod to Elongate 1-mm when Subjected to 8,000 kg of Tension Force

Problem
A tensile load of 8000 kg elongates a 1-m long square rod by 1 mm. Steel modulus of elasticity is 2 × 106 kg/cm2. What is the dimension of a side of the rod?

A.   5 cm C.   2 cm
B.   1 cm D.   4 cm

The Distance the Particle Travels with Given Position Function x(t) = t^4 - 8t^2

Problem
Given the position function x(t) = t4 - 8t2, find the distance that the particle travels at t = 0 to t = 4.

A.   160 C.   140
B.   150 D.   130

Answer Key

Compound Curves: Finding the Stationing of PCC with Given Stationing of PC

Problems
A compound curve has the following characteristics:

I1 = 24° D1 = 6°
I2 = 36° D2 = 4°
Stationing of P.C. = km 10 + 420

Compute the stationing of P.C.C.

A.   km 10 + 560 C.   km 10 + 520
B.   km 10 + 540 D.   km 10 + 500

Pages

Subscribe to MATHalino RSS