- strength of materials
- Analytic Geometry Problem Set [Locked: Multiple Questions]
- Equation of circle tangent to two lines and passing through a point
- Product of Areas of Three Dissimilar Right Triangles
- Perimeter of Right Triangle by Tangents
- Differential equations
- Laplace
- Families of Curves: family of circles with center on the line y= -x and passing through the origin
- Family of Plane Curves
- Differential equation

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

#1.

To get the expression of the velocity of the man-boat system, start by getting the net force...

Net force = $100$ N - $60$ N = $40$ N

Getting the acceleration of the system using Newton's second law of motion:

$$Force = mass \times acceleration$$ $$F = ma$$

Then...

$$a = \frac{F}{m}$$ $$a = \frac{40 \space newtons}{25\space kg + 50 \space kg}$$ $$a = 0.53 \space \frac{m}{s^2}$$

Using the kinematic equation $v_f = v_i+at$, where $v_f$ is the final velocity, $v_i$ is the initial velocity, $a$ is the acceleration and $t$ is time

So...

$$v_f = v_i+at$$

Get the acceleration $a$:

$$a = \frac{v_f-v_i}{t}$$ $$0.53 \space \frac{m}{s^2} = \frac{v_f-0 \space \frac{m}{s}}{t}$$

Then express the final velocity $v_f$ of the boat-man system in terms of time:

$\color {green}{v_f = 0.53t}$

#2

The time needed for the boat-man system to reach $5 \space \frac{m}{s}$ would be...

$$v_f = 0.53t$$ $$5 \space \frac{m}{s} = 0.53t$$ $$\color{green}{t = 9.4 \space seconds}$$

Alternate solutions are highly encouraged.....