Two cylinders of equal radius have their axes meeting at right angles. Find the radius of the cylinders if the volume of the common portion is 144 cu.cm.

- strength of materials
- Analytic Geometry Problem Set [Locked: Multiple Questions]
- Equation of circle tangent to two lines and passing through a point
- Product of Areas of Three Dissimilar Right Triangles
- Perimeter of Right Triangle by Tangents
- Differential equations
- Laplace
- Families of Curves: family of circles with center on the line y= -x and passing through the origin
- Family of Plane Curves
- Differential equation

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

To get the radius of the circle found on this crossing cylinders, recall that:

where $r$ is the radius of the circle found on the base of the cylinders and $V$ is the volume of the common portion of crossing cylinders shown above.

With that in mind, we have:

$$V = \frac{16}{3}r^3$$ $$144 \space cm^3 = \frac{16}{3}r^3$$ $$r = 3 \space cm$$

Therefore, the radius of the circle found on the bases of crossing cylinders is $\color{green}{3 \space cm}$.

Alternate solutions are encouraged....