find the equation of the circle that is tangent to the line 2x+y=1 and 2x+4y=3 and whose centeris on the line 2x-18y=-25

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

Center (h, k)

$2h - 18k = -25$

$k = \dfrac{2h + 25}{18}$

Distance from (h, k) to 2x + y = 1

$d_1 = \dfrac{2h + k - 1}{\sqrt{2^2 + 1^2}}$

$d_1 = \dfrac{2h + k - 1}{\sqrt{5}}$

Distance from (h, k) to 2x + 4y = 3

$d_2 = \dfrac{2h + 4k - 3}{\sqrt{2^2 + 4^2}}$

$d_2 = \dfrac{2h + 4k - 3}{2\sqrt{5}}$

Radius of circle r = d

_{1}= d_{2}$d_1 = d_2$

$\dfrac{2h + k - 1}{\sqrt{5}} = \dfrac{2h + 4k - 3}{2\sqrt{5}}$

$2(2h + k - 1) = 2h + 4k - 3$

$2h - 2k + 1 = 0$

$2h - 2\left( \dfrac{2h + 25}{18} \right) + 1 = 0$

$18h - (2h + 25) + 9 = 0$

$h = 1$

$k = \dfrac{2(1) + 25}{18}$

$k = \frac{3}{2}$

$r = \dfrac{2(1) + \frac{3}{2} - 1}{\sqrt{5}}$

$r = \frac{1}{2}\sqrt{5}$

Equation of the circle

$(x - h)^2 + (y - k)^2 = r^2$

$(x - 1)^2 + (y - \frac{3}{2})^2 = (\frac{1}{2}\sqrt{5})^2$

$(x^2 - 2x + 1) + (y^2 - 3y + \frac{9}{4}) = \frac{5}{4}$

$x^2 + y^2 - 2x - 3y + 2 = 0$

thank you po!