what is the equation of a circle touching the lines x-3y-11=0 and 3x-y-9=0 and having its center on the line 4x+y-27=0?

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

To get the equation of the circle, minding those conditions, we need to make a figure...

Now we need an acute angle bisector of equations $\color{red}{x-3y-11=0} \space or \space \color{red}{y = \frac{x}{3} - \frac{11}{3}}$ and $\color{blue}{3x-y-9=0} \space or \space \color{blue}{y = 3x-9}$ so we can locate the intersection of this acute angle bisector to the equation $4x+y-27=0 \space or \space y = -4x+27$. To get this acute angle bisector, do this:

Let $r_1$ be the distance from equation $\color{red}{x-3y-11=0} \space or \space \color{red}{y = \frac{x}{3} - \frac{11}{3}}$ to the point along the line $\color{green}{4x+y-27=0} \space or \color{green}{\space y = -4x+27}$ and let $r_2$ be the distance from equation $\color{blue}{3x-y-9=0} \space or \space \color{blue}{y = 3x-9}$ to the point along the line $\color{green}{4x+y-27=0} \space or \color{green}{\space y = -4x+27}$.

Recall that the distance from the line $Ax_1+By_1+C=0$ to a point $P(x,y)$ (or from a point $P(x,y)$ to a line $Ax+By+C=0$) is:

$$d = \frac{Ax_1+By_1+C}{\pm \sqrt{A^2 + B^2}}$$

and the sign of the radical $\sqrt{A^2 + B^2}$ must be opposite that of $C$.

Then....

$$r_1 = -r_2$$ $$\frac{3x-y-9}{+\sqrt{3^2+(-1)^2}} = -\frac{x-3y-11}{+\sqrt{1^2 + (-3)^2}}$$ $$3x-y-9 = -(x-3y-11)$$ $$3x-y-9 = -x+3y+11$$ $$4x-4y-20 =0$$ $$x-y-5=0$$

Getting the $y$, it becomes $y = x-5$. Intersection between $\color{orange}{x-y-5=0} \space or \space \color{orange}{y = x-5}$ and $\color{green}{4x+y-27=0} \space or \color{green}{\space y = -4x+27}$ is $C(x,y) = C(\frac{32}{5}, \frac{7}{5}) $

The distance from $C(x,y) = C(\frac{32}{5}, \frac{7}{5})$ to the line $\color{blue}{3x-y-9=0} \space or \space \color{blue}{y = 3x-9}$, which is the radius of this circle, is:

$$d = \frac{Ax_1+By_1+C}{\pm \sqrt{A^2 + B^2}}$$ $$d = \frac{3\left( \frac{32}{5}\right)+(-1)\left( \frac{7}{5}\right)-9}{\pm \sqrt{3^2 + (-1)^2}}$$ $$d = \frac{22\sqrt{10}}{25}$$

The distance from $C(x,y) = C(\frac{32}{5}, \frac{7}{5})$ to the line $\color{red}{x-3y-11=0} \space or \space \color{red}{y = \frac{x}{3} - \frac{11}{3}}$, which is the radius of this circle, is:

$$d = \frac{Ax_1+By_1+C}{\pm \sqrt{A^2 + B^2}}$$ $$d = \frac{1\left( \frac{32}{5}\right)+(-3)\left( \frac{7}{5}\right)-11}{\pm \sqrt{1^2 + (-3)^2}}$$ $$d = -\frac{22\sqrt{10}}{25}$$

Therefore, the radius of this circle is $\frac{22\sqrt{10}}{25}$ and the center of the circle is $C(x,y) = C(\frac{32}{5}, \frac{7}{5}) $.

Ultimately, the equation of the circle is $\color{violet}{(x-\frac{32}{5})^2 + (y-\frac{7}{5})^2 = \left(\frac{22\sqrt{10}}{25}\right)^2}$.

Getting the $y$, it becomes $\color{violet}{y = \frac{7}{5} \pm \sqrt{\frac{968}{125} - \left(x - \frac{32}{5}\right)^2}}$

Alternate solutions are encouraged.....