Can you help with the laplace transform of derivative of sin (at)

August 19, 2017 - 10:08pm

#1
Can you help with the laplace transform of derivative of sin (at)

August 19, 2017 - 10:08pm

#1
lizzie

Can you help with the laplace transform of derivative of sin (at)

Can you help with the laplace transform of derivative of sin (at)

Subscribe to MATHalino.com on

We're now on YouTube! Please subscribe.

- Family of Plane Curves
- Decimal Fractional Parts of Dim's on Hypotenuses of Dissimilar Right Triangles
- Acceleration of Riged body (flyweight) with forces
- Cables and Arches
- Trigo sin cos tan sec csc cot
- Arithmetic sequence
- Round off 314.587321 into four significant figures
- algebra 1
- Concavity calculus
- Problem 126 explanation please

- Family of Plane Curves
- Acceleration of Riged body (flyweight) with forces
- Trigo sin cos tan sec csc cot
- Concavity calculus
- Problem 126 explanation please
- Finding the sum of sequence
- Decimal Fractional Parts of Dim's on Hypotenuses of Dissimilar Right Triangles
- Product of Areas of Three Dissimilar Right Triangles
- Area of Right Triangle Using Radius of Incircle
- The Formula for the Curve of a Trumpet Bell

I think of two versions of that problem.

1.) I got to get the derivative of $\sin(at)$ first before getting the Laplace transform of the derivative of $\sin(at).$

2.) This form: $\mathcal L\{ \frac{d}{dt}(sin (at)) \}$

I think I go do the #1.......because there is another operation that deas with Laplace transforms of derivatives.

To get the Laplace transform of derivative of $\sin (at)$, get first the derivative of $\sin (at)$. So we let $u = at$ and $du = a.$ Then recall that $\frac{d}{dx}(\sin u) = \cos(u) du$. So....

$$\frac{d}{dx}(\sin u ) = \cos (u) du$$ $$\frac{d}{dx}(\sin (at) ) = \cos (at) (a)$$ $$\frac{d}{dx}(\sin (at) ) = a \cos (at) $$

We will get the Laplace transform of $a \cos (at)$.

Recall that the Laplace transform of $\cos (\omega_o t)$ is $\frac{s}{s^2 + \omega_o ^2}$. Then the Laplace transform of $a \cos (at)$ would be:

$$\mathcal L \{ \cos (\omega_o t) \} = \frac{s}{s^2 + \omega_o ^2}$$ $$\mathcal L \{ a \cos (at) \} = a \left( \frac{s}{s^2 + (a)^2} \right)$$ $$\mathcal L \{ a \cos (at) \} = a \left( \frac{s}{s^2 + a^2} \right)$$

We conclude that Laplace transform of $a \cos (at)$ is $ \frac{a s}{s^2 + a^2} $.

Hope it helps:-)

hi Lee:-)