Can you help with the laplace transform of derivative of sin (at)

August 19, 2017 - 10:08pm

#1
Can you help with the laplace transform of derivative of sin (at)

August 19, 2017 - 10:08pm

#1
lizzie

Can you help with the laplace transform of derivative of sin (at)

Can you help with the laplace transform of derivative of sin (at)

Subscribe to MATHalino.com on

SPONSORED LINKS

We're now on YouTube! Please subscribe.

- Liquid Level of Horizontal Tank
- Help a Calculus dummy.
- Math: sum from n = 1 to n = infinity of (a_n cos (n pi x / L) + b_n sin (n pi x / L))
- Math
- algebra 1
- math
- Sight Distance of Vertical Parabolic Curve
- SOLID GEOMETRY: fly stationed at a point on the circumference of the base of a cylindrical tower
- Steel design
- Differential Equation

I think of two versions of that problem.

1.) I got to get the derivative of $\sin(at)$ first before getting the Laplace transform of the derivative of $\sin(at).$

2.) This form: $\mathcal L\{ \frac{d}{dt}(sin (at)) \}$

I think I go do the #1.......because there is another operation that deas with Laplace transforms of derivatives.

To get the Laplace transform of derivative of $\sin (at)$, get first the derivative of $\sin (at)$. So we let $u = at$ and $du = a.$ Then recall that $\frac{d}{dx}(\sin u) = \cos(u) du$. So....

$$\frac{d}{dx}(\sin u ) = \cos (u) du$$ $$\frac{d}{dx}(\sin (at) ) = \cos (at) (a)$$ $$\frac{d}{dx}(\sin (at) ) = a \cos (at) $$

We will get the Laplace transform of $a \cos (at)$.

Recall that the Laplace transform of $\cos (\omega_o t)$ is $\frac{s}{s^2 + \omega_o ^2}$. Then the Laplace transform of $a \cos (at)$ would be:

$$\mathcal L \{ \cos (\omega_o t) \} = \frac{s}{s^2 + \omega_o ^2}$$ $$\mathcal L \{ a \cos (at) \} = a \left( \frac{s}{s^2 + (a)^2} \right)$$ $$\mathcal L \{ a \cos (at) \} = a \left( \frac{s}{s^2 + a^2} \right)$$

We conclude that Laplace transform of $a \cos (at)$ is $ \frac{a s}{s^2 + a^2} $.

Hope it helps:-)

hi Lee:-)