**Find the diff equation of family of circles with center on the line y= -x and passing through the origin.**

THANK YOU :)

September 12, 2017 - 9:10pm

#1
danedison

Families of Curves: family of circles with center on the line y= -x and passing through the origin

**Find the diff equation of family of circles with center on the line y= -x and passing through the origin.**

THANK YOU :)

Subscribe to MATHalino.com on

We're now on YouTube! Please subscribe.

- Family of Plane Curves
- Decimal Fractional Parts of Dim's on Hypotenuses of Dissimilar Right Triangles
- Acceleration of Riged body (flyweight) with forces
- Cables and Arches
- Trigo sin cos tan sec csc cot
- Arithmetic sequence
- Round off 314.587321 into four significant figures
- algebra 1
- Concavity calculus
- Problem 126 explanation please

- Family of Plane Curves
- Acceleration of Riged body (flyweight) with forces
- Trigo sin cos tan sec csc cot
- Concavity calculus
- Problem 126 explanation please
- Finding the sum of sequence
- Decimal Fractional Parts of Dim's on Hypotenuses of Dissimilar Right Triangles
- Product of Areas of Three Dissimilar Right Triangles
- Area of Right Triangle Using Radius of Incircle
- The Formula for the Curve of a Trumpet Bell

$(x - h)^2 + (y - k)^2 = r^2$

$(x - h)^2 + (y + h)^2 = 2h^2$

$2(x - h) + 2(y + h)y' = 0$

$(x - h) + (y + h)y' = 0$

$-h(1 - y') = -(x + yy')$

$h = \dfrac{x + yy'}{1 - y'}$

$\left( x - \dfrac{x + yy'}{1 - y'} \right)^2 + \left( y + \dfrac{x + yy'}{1 - y'} \right)^2 = 2\left( \dfrac{x + yy'}{1 - y'} \right)^2$

$\left[ \dfrac{(x - xy') - (x + yy')}{1 - y'} \right]^2 + \left[ \dfrac{(y - yy') + (x + yy')}{1 - y'} \right]^2 = 2\left( \dfrac{x + yy'}{1 - y'} \right)^2$

$\left[ (x - xy') - (x + yy') \right]^2 + \left[ (y - yy') + (x + yy') \right]^2 = 2\left( x + yy' \right)^2$

$(x + y)^2 (y')^2 + (x + y)^2 = 2(x + yy')^2$