# exact DE: [ 2x + y cos (x^2) - 2xy + 1 ] dx + [ sin (x^2) - x^2 ] dy = 0

2 posts / 0 new
Sydney Sales
exact DE: [ 2x + y cos (x^2) - 2xy + 1 ] dx + [ sin (x^2) - x^2 ] dy = 0

[ 2x + y cos (x^2) - 2xy + 1 ] dx + [ sin (x^2) - x^2 ] dy = 0

Jhun Vert

$(2x + y \cos x^2 - 2xy + 1)\,dx + (\sin x^2 - x^2)\,dy = 0$

Check for exactness:
$M = 2x + y \cos x^2 - 2xy + 1$

$\dfrac{\partial M}{\partial y} = \cos x^2 - 2x$

$N = \sin x^2 - x^2$

$\dfrac{\partial N}{\partial x} = 2x \cos x^2 - 2x$

$\dfrac{\partial M}{\partial y} \ne \dfrac{\partial N}{\partial x}$

The equation is not exact as you claimed it is. Maybe you mean this equation:

$(2xy \cos x^2 - 2xy + 1)\,dx + (\sin x^2 - x^2)\,dy = 0$

which is exact. I am not sure, of course, of what you really mean. It is just my speculation.

## Add new comment

### Deafult Input

• Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
• Web page addresses and e-mail addresses turn into links automatically.
• Lines and paragraphs break automatically.
• Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and $...$ for displayed mathematics, and $...$ and $...$ for in-line mathematics.

### Plain text

• No HTML tags allowed.
• Lines and paragraphs break automatically.