∈=p/Ao((1-(x/2L) *E^(-1)

I am trying to integrate the above. For clarity p is over Ao((1-(x/2L) and then all multiplied by E^(-1). Do I need to deal with the Ao((1-(x/2L) first?

Thanks in advance Paul

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

Hi Paul, I understand you need to integrate the equation but you did not present to us the variable of integration. Assuming your variable is

xthen other symbol likep,A,_{o}L, andEare constants. Am I right? If so, is this your equation?$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left( \dfrac{1 - x}{2L} \right)} \, dx$

Assuming my interpretations are correct, here is how to integrate it:

$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left( \dfrac{1 - x}{2L} \right)} \, dx$

$\displaystyle \epsilon = \dfrac{2pL}{EA_o}\int \dfrac{dx}{1 - x}$

$\displaystyle \epsilon = -\dfrac{2pL}{EA_o}\ln (1 - x) + C$

Hi Romel, you are correct variable is x. I couldn't paste the equation in. The e-1 should be multiplied by the p/A0 equation, but I think I understand it. I need to run some software now and compare the hand calcs.

The other way that I looked at your equation is this:

$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left(1 - \dfrac{x}{2L} \right)} \, dx$

$\displaystyle \epsilon = \dfrac{p}{EA_o}\int \dfrac{dx}{\dfrac{2L - x}{2L}}$

$\displaystyle \epsilon = \dfrac{2pL}{EA_o}\int \dfrac{dx}{2L - x}$

$\displaystyle \epsilon = -\dfrac{2pL}{EA_o}\ln (2L - x) + C$

https://www.flickr.com/photos/baldypaul/33086782230/in/datetaken/

If you copy and paste the link Romel you will see my original equation I am trying to integrate to x

https://www.flickr.com/photos/baldypaul/33086782230/in/datetaken/

If you copy and paste the flicker link you will see the equation I am trying to solve Romel