Number 1 $\displaystyle \int y^2 \, {\rm csch} \, y^3 \, dy$

$\displaystyle = \frac{1}{3} \int {\rm csch} \, y^3 (3y^2\, dy)$

$\displaystyle = -\frac{1}{3} {\rm coth} \, y^3 + C$

More information about text formats

Follow @iMATHalino

MATHalino

Number 1$\displaystyle \int y^2 \, {\rm csch} \, y^3 \, dy$

$\displaystyle = \frac{1}{3} \int {\rm csch} \, y^3 (3y^2\, dy)$

$\displaystyle = -\frac{1}{3} {\rm coth} \, y^3 + C$

## Add new comment