Trigo sin cos tan sec csc cot

3 posts / 0 new
Last post
ケネス ケネス's picture
Trigo sin cos tan sec csc cot

The equation says, sin2x=2sinxcosx
=2tanx/1+tan^2x
... How did they get 2tanx/1+tan^2x?

Tags: 

Jhun Vert's picture
$\sin 2x = 2 \sin x \cos x$

$\sin 2x = 2 \sin x \cos x$

      $= \dfrac{2 \sin x \cos x}{\cos x \sec^2 x} \cdot \cos x \sec^2 x$

      $= 2 \cdot \dfrac{\sin x}{\cos x} \cdot \dfrac{1}{\sec^2 x} \cdot \cos x \cdot \cos x \sec^2 x$

      $= 2 \cdot \tan x \cdot \dfrac{1}{\sec^2 x} \cdot \cos^2 x \sec^2 x$

      $= 2 \cdot \tan x \cdot \dfrac{1}{1 + \tan^2 x} \cdot \cos^2 x \cdot \dfrac{1}{\cos^2 x}$

ケネス ケネス's picture
In 2sinxcosx/cosxsec^2x

In 2sinxcosx/cosxsec^2x•cosxsec^2x, why is sec^2x is used?

Subscribe to MATHalino.com on