
$x = b \csc \theta$
$y = c \sec \theta$
$L = x + y$
$L = b \csc \theta + c \sec \theta$
$\dfrac{dL}{d\theta} = -b \csc \theta \cot \theta + c \sec \theta \tan \theta = 0$
$c \sec \theta \tan \theta = b \csc \theta \cot \theta$
$c \left( \dfrac{1}{\cos \theta} \right) \left( \dfrac{\sin \theta}{\cos \theta} \right) = b \left( \dfrac{1}{\sin \theta} \right) \left( \dfrac{\cos \theta}{\sin \theta} \right)$
$\dfrac{\sin^3 \theta}{\cos^3 \theta} = \dfrac{b}{c}$
$\tan^3 \theta = \dfrac{b}{c}$
$\tan \theta = \dfrac{b^{1/3}}{c^{1/3}}$
$L = b \csc \theta + c \sec \theta$
$L = b \left( \dfrac{\sqrt{b^{2/3} + c^{2/3}}}{b^{1/3}} \right) + c \left( \dfrac{\sqrt{b^{2/3} + c^{2/3}}}{b^{1/3}} \right)$
$L = b^{2/3}\sqrt{b^{2/3} + c^{2/3}} + c^{2/3}\sqrt{b^{2/3} + c^{2/3}}$
$L = (b^{2/3} + c^{2/3})\sqrt{b^{2/3} + c^{2/3}}$
$L = (b^{2/3} + c^{2/3})(b^{2/3} + c^{2/3})^{1/2}$
$L = (b^{2/3} + c^{2/3})^{3/2}$ answer