
Given Volume:
$V = x \, (3x) \, y
V = 3x^2 \, y$
$0 = 3x^2 \, y' + 6xy$
$y' = -2y/x$
Total Area:
$A_T = 2(3x^2) + 2(3xy) + 2(xy)$
$A_T = 6x^2 + 8xy$
$dA_T / dx = 12x + 8 \, (x y' + y) = 0$
$12x + 8 \, [ \, x (-2y/x) + y \, ] = 0$
$12x + 8 \, [ \, -2y + y \, ] = 0$
$12x = 8y$
$y = \frac{3}{2} x$
Altitude = 3/2 × shorter side of base. answer