
Given perimeter:
$P = b + 2(h - r) + \pi r$
$P = b + 2h - 2r + \pi r$
Where:
$b = 2r$
$r = \frac{1}{2}b$
Thus,
$P = b + 2h - b + \frac{1}{2}\pi b$
$P = 2h + \frac{1}{2}\pi b$
$\dfrac{dP}{db} = 2 \dfrac{dh}{db} + \frac{1}{2}\pi = 0$
$\dfrac{dh}{db} = -\frac{1}{4}\pi$
Light is most if area is maximum:
$A = \frac{1}{2}\pi r^2 + b(h - r)$
$A = \frac{1}{2}\pi (\frac{1}{2}b)^2 + b(h - \frac{1}{2}b)$
$A = \frac{1}{8}\pi b^2 + bh - \frac{1}{2}b^2$
$A = \frac{1}{8}(\pi - 4)b^2 + bh$
$\dfrac{dA}{db} = \frac{2}{8}(\pi - 4)b + b \dfrac{dh}{db} + h = 0$
$\frac{1}{4}\pi b - b - \frac{1}{4}\pi b + h = 0$
$h = b$
∴ breadth = height answer