
$(0.5y)^2 + (0.5y + x)^2 = a^2$
$(0.5y + x)^2 = a^2 - 0.25y^2$
$x = \sqrt{a^2 - 0.25y^2} - 0.5y$
Area of rectangle
$A = xy$
$A = \left( \sqrt{a^2 - 0.25y^2} - 0.5y \right) \, y$
$A = y \sqrt{a^2 - 0.25y^2} - 0.5y^2$
$\dfrac{dA}{dy} = y \dfrac{-0.5y}{2\sqrt{a^2 - 0.25y^2}} + \sqrt{a^2 - 0.25y^2} - y = 0$
$\dfrac{-0.5y^2 + 2(a^2 - 0.25y^2) - 2y\sqrt{a^2 - 0.25y^2}}{2\sqrt{a^2 - 0.25y^2}} = 0$
$-y^2 + 4(a^2 - 0.25y^2) - 4y\sqrt{a^2 - 0.25y^2} = 0$
$4a^2 - 2y^2 = 4y\sqrt{a^2 - 0.25y^2}$
$2a^2 - y^2 = 2y\sqrt{a^2 - 0.25y^2}$
$4a^4 - 4a^2 \, y^2 + y^4 = 4y^2 \, (a^2 - 0.25y^2)$
$2y^4 - 8a^2 \, y^2 + 4a^4 = 0$
$y^4 - 4a^2 \, y^2 + 2a^4 = 0$
$y^2 = \dfrac{4a^2 \pm \sqrt{16a^4 - 8a^4}}{2}$
$y^2 = \dfrac{4a^2 \pm 2.828a^2}{2}$
$y^2 = 3.414a^2 \, \text{ and } \, 0.586a^2$
for
$y^2 = 3.414a^2$
$y = 1.848a$
$x = \sqrt{a^2 - 0.25(3.414a^2)} - 0.5(1.848a)$
$x = -0.541a$ (meaningless)
for
$y^2 = 0.586a^2$
$y = 0.765a$
$x = \sqrt{a^2 - 0.25(0.586a^2)} - 0.5(0.765a)$
$x = 0.541a$ answer