# 229 Y-coordinate of the point of application of the force

**Problem 229**

In Fig. P-229, find the y-coordinate of point A so that the 361-lb force will have a clockwise moment of 400 ft-lb about O. Also determine the X and Y intercepts of the line of action of the force.

**Solution 229**

$M_O = y_AF_x - x_AF_y$

$400 = y_A(361)(\frac{3}{\sqrt{13}}) - 2(361)(\frac{2}{\sqrt{13}})$

$y_A = 2.665 \, \text{ ft}$ *answer*

Y-intercept of the line of action of force F

$M_O = F_xb$

$400 = 361(\frac{3}{\sqrt{13}})b$

$b = 1.332 \, \text{ ft above point O}$ *answer*

X-intercept of the line of action of force F

$M_O = F_ya$

$400 = 361(\frac{2}{\sqrt{13}})a$

$a = 1.998 \, \text{ ft to the left of point O}$ *answer*