# Problem 453 - Analysis of A-frame with Weightless Cylinder

**Problem 453**

For the frame shown in Figure P-453, determine the resultant hinge forces at B, C, and E.

**Solution 453**

$y = 3 ~ \text{m}$

$\Sigma F_x = 0$

$A_H = 0$

$3R_F = 6(240)$

$R_F = 480 ~ \text{kN}$

$3A_V = 3(240)$

$A_V = 240 ~ \text{kN}$

From the FBD of member BG

$2E_V = 4(240)$

$E_V = 480 ~ \text{kN}$

$2B_V = 2(240)$

$B_V = 240 ~ \text{kN}$

From the FBD of member CF

$C_V + 480 = 480$

$C_V = 0$

$3C_H = 1(240)$

$C_H = 80 ~ \text{kN}$

$\Sigma M_C = 0$

$3E_H = (3 - 1)(240)$

$E_H = 160 ~ \text{kN}$

From the FBD of member AC

$1.5B_H + 1(240) = 4.5(80)$

$B_H = 80 ~ \text{kN}$

Summary

$B_H = 80 ~ \text{kN}$ and $B_V = 240 ~ \text{kN}$

$C_H = 80 ~ \text{kN}$ and $C_V = 0$

$E_H = 160 ~ \text{kN}$ and $E_V = 480 ~ \text{kN}$

Thus,

$R_B = \sqrt{80^2 + 240^2} = 252.98 ~ \text{kN}$ ← *answer*

$R_C = \sqrt{80^2 + 0^2} = 80 ~ \text{kN}$ ← *answer*

$R_E = \sqrt{160^2 + 480^2} = 505.96 ~ \text{kN}$ ← *answer*

- Log in to post comments