
$\tau_{max} = \dfrac{16T}{\pi d^3}$
$20(1000) = \dfrac{16T}{\pi (0.20)^3}$
$T = 10\pi \, \text{lb}\cdot\text{in}$
$L = \dfrac{T}{0.50 \, \text{lb}\cdot\text{in/in}}$
$L = \dfrac{10\pi \, \text{lb}\cdot\text{in}}{0.50 \, \text{lb}\cdot\text{in/in}}$
$L = 20\pi \, \text{in} = 62.83 \, \text{in}$
$\theta = \dfrac{TL}{JG}$
If θ = dθ, T = 0.5L and L = dL
$\displaystyle \int d\theta = \frac{1}{JG} \int_0^{20\pi} (0.5L) \, dL$
$\theta = \left[ \dfrac{0.5L^2}{2} \right]_0^{20\pi} = \dfrac{1}{JG} \, [ \, 0.25(20\pi)^2 - 0.25(0)^2 \, ]$
$\theta = \dfrac{100\pi^2}{\frac{1}{32}\pi (0.20^4)(12 \times 10^6)}$
$\theta = 0.5234 \, \text{rad} = 30^\circ$ answer
Comments
Why is the upper limit 20pi?
Why is the upper limit 20pi?
That is the total length of
That is the total length of the shaft L, the solution for $L = 20\pi ~\text{inches}$ is also shown above.