
$M_{max} = \frac{1}{8} w_o L^2$
$M_{max} = \frac{1}{8} w_o (4^2)$
$M_{max} = 2w_o$
$M_r = \dfrac{f_b I}{y}$
$M_t = \dfrac{40(30 \times 10^6 )}{80}$
$M_t = 15\,000\,000 \, \text{N}\cdot\text{mm}$
$M_t = 15 \, \text{kN}\cdot\text{m}$
$M_c = \dfrac{80(30 \times 10^6 )}{200}$
$M_c = 12\,000\,000 \, \text{N}\cdot\text{mm}$
$M_c = 12 \, \text{kN}\cdot\text{m}$
The section is stronger in tension and weaker in compression, so compression governs in selecting the maximum moment.
$M_{max} = M_r$
$2w_o = 12$
$w_o = 6 \, \text{kN/m}$ answer