
$\Sigma M_{R2} = 0$
$3R_1 = 4w_o (1) $
$R_1 = \frac{4}{3}w_o$
$\Sigma M_{R1} = 0$
$3R_2 = 4w_o (2)$
$R_2 = \frac{8}{3}w_o$
From shear diagram
$\dfrac{x}{\frac{4}{3}w_o} = \dfrac{3 - x}{\frac{5}{3}w_o}$
$\frac{5}{3}x = 4 - \frac{4}{3}x$
$x = \frac{4}{3} \, \text{ m}$
Based on allowable bending stress
$f_b = \dfrac{Mc}{I}$
Where (From Solution 585):
c = 125 mm
I = 334 375 000 mm4
Thus,
$10 = \dfrac{\frac{8}{9}w_o (1000^2)(125)}{334\,375\,000}$
$w_o = 30.09 \, \text{ kN/m}$
Based on allowable shear stress
$f_v = \dfrac{VQ}{Ib}$
Where (From Solution 585):
Q = 1 781 250 mm3
I = 334 375 000 mm4
b = 100 mm
Thus,
$1 = \dfrac{\frac{5}{3}w_o(1000)(1\,781\,250)}{334\,375\,000(100)}$
$w_o = 11.26 \, \text{ kN/m}$
For safe value of wo, use wo = 11.26 kN/m answer