The Right Circular Cylinder

A right circular cylinder is a cylinder whose base is a circle and whose elements are perpendicular to its base.
 

Right Circular Cylinder Exploded

 

Properties of a Right Circular Cylinder

  1. The axis of a right circular cylinder is the line joining the centers of the bases.
  2. For any oblique or non-oblique sections which do not pass any one base, the center of which is at the axis.
  3. A right circular cylinder can be formed by revolving a rectangle about one side as axis of revolution.
  4. Every section of a right circular cylinder made by a cutting plane containing two elements and parallel to the axis is a rectangle.

 

Formulas for Right Circular Cylinder

Area of the base, Ab
$A_b = \pi r^2$

$A_b = \dfrac{\pi}{4}d^2$

 

Lateral Area, AL
$A_L = 2\pi \, rh$

$A_L = \pi \, dh$

 

Volume, V
$V = A_b h$

$V = \pi r^2 h$

$V = \dfrac{\pi}{4} d^2 h$

 

Total Area, AT
Total area (open both ends), $A_T = A_L$

Total Area (open one end), $A_T = A_b + A_L$

Total Area (closed both ends), $A_T = 2A_b + A_L$

 

Subscribe to MATHalino.com on