Beam Deflection

Simply Supported Beam with Support Added at Midspan to Prevent Excessive Deflection

Situation
A simply supported beam has a span of 12 m. The beam carries a total uniformly distributed load of 21.5 kN/m.
1.   To prevent excessive deflection, a support is added at midspan. Calculate the resulting moment (kN·m) at the added support.

A.   64.5 C.   258.0
B.   96.8 D.   86.0

2.   Calculate the resulting maximum positive moment (kN·m) when a support is added at midspan.

A.   96.75 C.   108.84
B.   54.42 D.   77.40

3.   Calculate the reaction (kN) at the added support.

A.   48.38 C.   161.2
B.   96.75 D.   80.62

 

Limit the Deflection of Cantilever Beam by Applying Force at the Free End

Situation
A cantilever beam, 3.5 m long, carries a concentrated load, P, at mid-length.

Given:
P = 200 kN
Beam Modulus of Elasticity, E = 200 GPa
Beam Moment of Inertia, I = 60.8 × 106 mm4

 

2018-nov-design-cantilever-beam-given.jpg

 

1.   How much is the deflection (mm) at mid-length?

A.   1.84 C.   23.50
B.   29.40 D.   14.70

2.   What force (kN) should be applied at the free end to prevent deflection?

A.   7.8 C.   62.5
B.   41.7 D.   100.0

3.   To limit the deflection at mid-length to 9.5 mm, how much force (kN) should be applied at the free end?

A.   54.1 C.   129.3
B.   76.8 D.   64.7

 

Support Added at the Midspan of Simple Beam to Prevent Excessive Deflection

Situation
A simply supported steel beam spans 9 m. It carries a uniformly distributed load of 10 kN/m, beam weight already included.

Given Beam Properties:
Area = 8,530 mm2
Depth = 306 mm
Flange Width = 204 mm
Flange Thickness = 14.6 mm
Moment of Inertia, Ix = 145 × 106 mm4
Modulus of Elasticity, E = 200 GPa

1.   What is the maximum flexural stress (MPa) in the beam?

A.   107 C.   142
B.   54 D.   71

2.   To prevent excessive deflection, the beam is propped at midspan using a pipe column. Find the resulting axial stress (MPa) in the column

Given Column Properties:
Outside Diameter = 200 mm
Thickness = 10 mm
Height = 4 m
A.   4.7 C.   18.8
B.   9.4 D.   2.8

3.   How much is the maximum bending stress (MPa) in the propped beam?

A.   26.7 C.   15.0
B.   17.8 D.   35.6

 

Continuous Beam With a Gap and a Zero Moment in Interior Support

Situation
A beam of uniform cross section whose flexural rigidity EI = 2.8 × 1011 N·mm2, is placed on three supports as shown. Support B is at small gap Δ so that the moment at B is zero.
 

design-practice-1-given.gif

 

1.   Calculate the reaction at A.

A.   4.375 kN C.   5.437 kN
B.   8.750 kN D.   6.626 kN

2.   What is the reaction at B?

A.   4.375 kN C.   5.437 kN
B.   8.750 kN D.   6.626 kN

3.   Find the value of Δ.

A.   46 mm C.   34 mm
B.   64 mm D.   56 mm

 

Problem 870 | Beam Deflection by Three-Moment Equation

Problem 870
Compute the value of EIδ at the overhanging end of the beam in Figure P-870 if it is known that the wall moment is +1.1 kN·m.
 

870-propped-beam-with-overhang.gif

 

Problem 869 | Deflection by Three-Moment Equation

Problem 869
Find the value of EIδ at the center of the first span of the continuous beam in Figure P-869 if it is known that M2 = -980 lb·ft and M3 = -1082 lb·ft.
 

869-continuous-beam.gif

 

Problem 868 | Deflection by Three-Moment Equation

Problem 868
Determine the values of EIδ at midspan and at the ends of the beam loaded as shown in Figure P-868.
 

868-simple-overhanging-beam-triangular-load.gif

 

Problem 860 | Deflection by Three-Moment Equation

Problem 860
Determine the value of EIδ at the end of the overhang and midway between the supports for the beam shown in Fig. P-860.
 

860-overhang-beam-given.gif

 

Deflections Determined by Three-Moment Equation

Problem 859
Determine the value of EIδ under P in Fig. P-859. What is the result if P is replaced by a clockwise couple M?
 

859-overhang-with-concentrated-load.gif

 

Subscribe to RSS - Beam Deflection