# compressive stress

## Solution to Problem 270 Thermal Stress

- Read more about Solution to Problem 270 Thermal Stress
- Log in or register to post comments

## Solution to Problem 265 Thermal Stress

**Problem 265**

A bronze bar 3 m long with a cross sectional area of 320 mm^{2} is placed between two rigid walls as shown in Fig. P-265. At a temperature of -20°C, the gap Δ = 2.5 mm. Find the temperature at which the compressive stress in the bar will be 35 MPa. Use α = 18.0 × 10^{-6} m/(m·°C) and E = 80 GPa.

- Read more about Solution to Problem 265 Thermal Stress
- Log in or register to post comments

## Solution to Problem 250 Statically Indeterminate

**Problem 250**

In the assembly of the bronze tube and steel bolt shown in Fig. P-250, the pitch of the bolt thread is p = 1/32 in.; the cross-sectional area of the bronze tube is 1.5 in.^{2} and of steel bolt is 3/4 in.^{2} The nut is turned until there is a compressive stress of 4000 psi in the bronze tube. Find the stresses if the nut is given one additional turn. How many turns of the nut will reduce these stresses to zero? Use E_{br} = 12 × 10^{6} psi and E_{st} = 29 × 10^{6} psi.

- Read more about Solution to Problem 250 Statically Indeterminate
- Log in or register to post comments

## Solution to Problem 233 Statically Indeterminate

**Problem 233**

A steel bar 50 mm in diameter and 2 m long is surrounded by a shell of a cast iron 5 mm thick. Compute the load that will compress the combined bar a total of 0.8 mm in the length of 2 m. For steel, E = 200 GPa, and for cast iron, E = 100 GPa.

- Read more about Solution to Problem 233 Statically Indeterminate
- Log in or register to post comments

## Solution to Problem 131 Bearing Stress

**Problem 131**

Repeat Problem 130 if the rivet diameter is 22 mm and all other data remain unchanged.

- Read more about Solution to Problem 131 Bearing Stress
- Log in or register to post comments

## Solution to Problem 130 Bearing Stress

**Problem 130**

Figure P-130 shows a roof truss and the detail of the riveted connection at joint B. Using allowable stresses of τ = 70 MPa and σ_{b}= 140 MPa, how many 19-mm-diameter rivets are required to fasten member BC to the gusset plate? Member BE? What is the largest average tensile or compressive stress in BC and BE?

- Read more about Solution to Problem 130 Bearing Stress
- 1 comment
- Log in or register to post comments

## Solution to Problem 123 Shear Stress

**Problem 123**

A rectangular piece of wood, 50 mm by 100 mm in cross section, is used as a compression block shown in Fig. P-123. Determine the axial force P that can be safely applied to the block if the compressive stress in wood is limited to 20 MN/m^{2} and the shearing stress parallel to the grain is limited to 5MN/m^{2}. The grain makes an angle of 20° with the horizontal, as shown. (Hint: Use the results in Problem 122.)

- Read more about Solution to Problem 123 Shear Stress
- Log in or register to post comments

## Solution to Problem 116 Shear Stress

**Problem 116**

As in Fig. 1-11c, a hole is to be punched out of a plate having a shearing strength of 40 ksi. The compressive stress in the punch is limited to 50 ksi. (a) Compute the maximum thickness of plate in which a hole 2.5 inches in diameter can be punched. (b) If the plate is 0.25 inch thick, determine the diameter of the smallest hole that can be punched.

- Read more about Solution to Problem 116 Shear Stress
- Log in or register to post comments

## Solution to Problem 113 Normal Stress

**Problem 113**

Find the stresses in members BC, BD, and CF for the truss shown in Fig. P-113. Indicate the tension or compression. The cross sectional area of each member is 1600 mm^{2}.

- Read more about Solution to Problem 113 Normal Stress
- Log in or register to post comments

## Solution to Problem 112 Normal Stress

**Problem 112**

Determine the cross-sectional areas of members AG, BC, and CE for the truss shown in Fig. P-112. The stresses are not to exceed 20 ksi in tension and 14 ksi in compression. A reduced stress in compression is specified to reduce the danger of buckling.

- Read more about Solution to Problem 112 Normal Stress
- 1 comment
- Log in or register to post comments