# fully restrained beam

## Problem 715 | Distributed loads placed symmetrically over fully restrained beam

**Problem 12**

Determine the moment and maximum EIδ for the restrained beam shown in Fig. RB-012. (Hint: Let the redundants be the shear and moment at the midspan. Also note that the midspan shear is zero.)

## Problem 713 | Fully restrained beam with symmetrically placed concentrated loads

**Problem 713**

Determine the end moment and midspan value of EIδ for the restrained beam shown in Fig. PB-010. (Hint: Because of symmetry, the end shears are equal and the slope is zero at midspan. Let the redundant be the moment at midspan.)

## Application of Double Integration and Superposition Methods to Restrained Beams

## Superposition Method

There are 12 cases listed in the method of superposition for beam deflection.

- Cantilever beam with...
- concentrated load at the free end.
- concentrated load anywhere on the beam.
- uniform load over the entire span.
- triangular load with zero at the free end
- moment load at the free end.

- Simply supported beam with...
- concentrated load at the midspan.
- concentrated load anywhere on the beam span.
- uniform load over the entire span.
- triangular load which is zero at one end and full at the other end.
- triangular load with zero at both ends and full at the midspan.
- moment load at the right support.
- moment load at the left support.

See beam deflection by superposition method for details.