geometric progression

Arithmetic, geometric, and harmonic progressions

a1 = value of the first term
am = value of any term after the first term but before the last term
an = value of the last term
n = total number of terms
m = mth term after the first but before nth
d = common difference of arithmetic progression
r = common ratio of geometric progression
S = sum

Arithmetic Progression, AP

Arithmetic progression is a sequence of numbers in which the difference of any two adjacent terms is constant. The constant difference is commonly known as common difference and is denoted by d. Examples of arithmetic progression are as follows:

Derivation of Formula for the Future Amount of Ordinary Annuity

The sum of ordinary annuity is given by

$F = \dfrac{A[ \, (1 + i)^n - 1 \, ]}{i}$


To learn more about annuity, see this page: ordinary annuity, deferred annuity, annuity due, and perpetuity.


Figure for Derivation of Sum of Ordinary Annuity


$F = \text{ Sum}$

$F = A + F_1 + F_2 + F_3 + \cdots + F_{n-1} + F_n$

$F = A + A(1 + i) + A(1 + i)^2 + A(1 + i)^3 + \cdots + A(1 + i)^{n-1} + A(1 + i)^n$

Relationship Between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers

For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship between the three is given by the formula

$AM \times HM = GM^2$


Below is the derivation of this relationship.

Derivation of Sum of Finite and Infinite Geometric Progression

Geometric Progression, GP
Geometric progression (also known as geometric sequence) is a sequence of numbers where the ratio of any two adjacent terms is constant. The constant ratio is called the common ratio, r of geometric progression. Each term therefore in geometric progression is found by multiplying the previous one by r.

Eaxamples of GP:

  • 3, 6, 12, 24, … is a geometric progression with r = 2
  • 10, -5, 2.5, -1.25, … is a geometric progression with r = -1/2