# Infinite Geometric Progression

## Sum of Areas of Infinite Number of Squares

**Problem**

The side of a square is 10 m. A second square is formed by joining, in the proper order, the midpoints of the sides of the first square. A third square is formed by joining the midpoints of the second square, and so on. Find the sum of the areas of all the squares if the process will continue indefinitely.

- Read more about Sum of Areas of Infinite Number of Squares
- Log in or register to post comments

## Sum of Areas of Equilateral Triangles Inscribed in Circles

**Problem**

An equilateral triangle is inscribed within a circle whose diameter is 12 cm. In this triangle a circle is inscribed; and in this circle, another equilateral triangle is inscribed; and so on indefinitely. Find the sum of the areas of all the triangles.

- Read more about Sum of Areas of Equilateral Triangles Inscribed in Circles
- Log in or register to post comments

## Arithmetic, geometric, and harmonic progressions

- Read more about Arithmetic, geometric, and harmonic progressions
- Log in or register to post comments

## Derivation of Sum of Finite and Infinite Geometric Progression

**Geometric Progression, GP**

Geometric progression (also known as geometric sequence) is a sequence of numbers where the ratio of any two adjacent terms is constant. The constant ratio is called the common ratio, r of geometric progression. Each term therefore in geometric progression is found by multiplying the previous one by r.

**Eaxamples of GP:**

- 3, 6, 12, 24, … is a geometric progression with r = 2
- 10, -5, 2.5, -1.25, … is a geometric progression with r = -1/2