second shifting

Problem 02 | Second Shifting Property of Laplace Transform

Problem 01
Find the Laplace transform of   $g(t) = \begin{cases} f(t - 2)^3 & t \gt 2 \\ 0 & t \lt 2 \end{cases}$
 

Problem 01 | Second Shifting Property of Laplace Transform

Problem 01
Find the Laplace transform of   $g(t) = \begin{cases} f(t - 1)^2 & t \gt 1 \\ 0 & t \lt 1 \end{cases}$
 

Second Shifting Property | Laplace Transform

Second Shifting Property
If   $\mathcal{L} \left\{ f(t) \right\} = F(s)$,   and   $g(t)
= \begin{cases} f(t - a) & t \gt a \\ 0 & t \lt a \end{cases}$
 

then,

$\mathcal{L} \left\{ g(t) \right\} = e^{-as} F(s)$

 

 
 
Subscribe to RSS - second shifting