Engineering Mathematics

thermal stress

Solution to Problem 276 Thermal Stress

Problem 276
Four steel bars jointly support a mass of 15 Mg as shown in Fig. P-276. Each bar has a cross-sectional area of 600 mm2. Find the load carried by each bar after a temperature rise of 50°C. Assume α = 11.7 µm/(m·°C) and E = 200 GPa.
 

Solution to Problem 275 Thermal Stress

Problem 275
A rigid horizontal bar of negligible mass is connected to two rods as shown in Fig. P-275. If the system is initially stress-free. Calculate the temperature change that will cause a tensile stress of 90 MPa in the brass rod. Assume that both rods are subjected to the change in temperature.
 

Solution to Problem 274 Thermal Stress

Problem 274
At what temperature will the aluminum and steel segments in Prob. 273 have numerically equal stress?
 

Solution to Problem 273 Thermal Stress

Problem 273
The composite bar shown in Fig. P-273 is firmly attached to unyielding supports. An axial force P = 50 kips is applied at 60°F. Compute the stress in each material at 120°F. Assume α = 6.5 × 10-6 in/(in·°F) for steel and 12.8 × 10-6 in/(in·°F) for aluminum.
 

Composite aluminum and steel bar

 

Solution to Problem 272 Thermal Stress

Problem 272
For the assembly in Fig. 271, find the stress in each rod if the temperature rises 30°C after a load W = 120 kN is applied.
 

Solution to Problem 271 Thermal Stress

Problem 271
A rigid bar of negligible weight is supported as shown in Fig. P-271. If W = 80 kN, compute the temperature change that will cause the stress in the steel rod to be 55 MPa. Assume the coefficients of linear expansion are 11.7 µm/(m·°C) for steel and 18.9 µm/(m·°C) for bronze.
 

Solution to Problem 270 Thermal Stress

Problem 270
A bronze sleeve is slipped over a steel bolt and held in place by a nut that is turned to produce an initial stress of 2000 psi in the bronze. For the steel bolt, A = 0.75 in2, E = 29 × 106 psi, and α = 6.5 × 10-6 in/(in·°F). For the bronze sleeve, A = 1.5 in2, E = 12 × 106 psi and α = 10.5 × 10-6 in/(in·°F). After a temperature rise of 100°F, find the final stress in each material.
 

Solution to Problem 269 Thermal Stress

Problem 269
As shown in Fig. P-269, there is a gap between the aluminum bar and the rigid slab that is supported by two copper bars. At 10°C, Δ = 0.18 mm. Neglecting the mass of the slab, calculate the stress in each rod when the temperature in the assembly is increased to 95°C. For each copper bar, A = 500 mm2, E = 120 GPa, and α = 16.8 µm/(m·°C). For the aluminum bar, A = 400 mm2, E = 70 GPa, and α = 23.1 µm/(m·°C).
 

Figure P-269

 

Solution to Problem 268 Thermal Stress

Problem 268
The rigid bar ABC in Fig. P-268 is pinned at B and attached to the two vertical rods. Initially, the bar is horizontal and the vertical rods are stress-free. Determine the stress in the aluminum rod if the temperature of the steel rod is decreased by 40°C. Neglect the weight of bar ABC.
 

268 Steel and aluminum rods

 

Solution to Problem 267 Thermal Stress

Problem 267
At a temperature of 80°C, a steel tire 12 mm thick and 90 mm wide that is to be shrunk onto a locomotive driving wheel 2 m in diameter just fits over the wheel, which is at a temperature of 25°C. Determine the contact pressure between the tire and wheel after the assembly cools to 25°C. Neglect the deformation of the wheel caused by the pressure of the tire. Assume α = 11.7 μm/(m·°C) and E = 200 GPa.
 

Pages