Uniformly Distributed Load

Solution to Problem 632 | Moment Diagrams by Parts

Problem 632
For the beam loaded as shown in Fig. P-632, compute the value of (AreaAB) barred(X)A. From this result, is the tangent drawn to the elastic curve at B directed up or down to the right? (Hint: Refer to the deviation equations and rules of sign.)
 

Overhang beam with point and rectangular loads

 

Solution to Problem 631 | Moment Diagrams by Parts

Problem 631
Determine the value of the couple M for the beam loaded as shown in Fig. P-631 so that the moment of area about A of the M diagram between A and B will be zero. What is the physical significance of this result?
 

Overhang beam with moment load at free end

 

Solution to Problem 627 | Moment Diagram by Parts

Problem 627
For the beam loaded as shown in Fig. P-627compute the moment of area of the M diagrams between the reactions about both the left and the right reaction. (Hint: Resolve the trapezoidal loading into a uniformly distributed load and a uniformly varying load.)
 

627-uniformly-varying.gif

 

Solution to Problem 626 | Moment Diagram by Parts

Problem 626
For the beam loaded as shown in Fig. P-626, compute the moment of area of the M diagrams between the reactions about both the left and the right reaction.
 

Simple beam with uniform load over the middle span

 

Solution to Problem 625 | Moment Diagram by Parts

Problem 625
For the beam loaded as shown in Fig. P-625, compute the moment of area of the M diagrams between the reactions about both the left and the right reaction. (Hint: Draw the moment diagram by parts from right to left.)
 

Uniform load over 3/4 of span and concentrated load at midspan of simple beam

 

Moment Diagram by Parts

The moment-area method of finding the deflection of a beam will demand the accurate computation of the area of a moment diagram, as well as the moment of such area about any axis. To pave its way, this section will deal on how to draw moment diagram by parts and to calculate the moment of such diagrams about a specified axis.
 

Solution to Problem 621 | Double Integration Method

Problem 621
Determine the value of EIδ midway between the supports for the beam shown in Fig. P-621. Check your result by letting a = 0 and comparing with Prob. 606. (Apply the hint given in Prob. 620.)
 

621-given-figure.jpg

 

Solution to Problem 615 | Double Integration Method

Problem 615
Compute the value of EI y at the right end of the overhanging beam shown in Fig. P-615.
 

Overhang beam with uniform load at the overhang

 

Solution to Problem 613 | Double Integration Method

Problem 613
If E = 29 × 106 psi, what value of I is required to limit the midspan deflection to 1/360 of the span for the beam in Fig. P-613?
 

Partially loaded simple beam

 

Solution to Problem 612 | Double Integration Method

Problem 612
Compute the midspan value of EI δ for the beam loaded as shown in Fig. P-612.
 

Simple beam with uniform load

 

Pages

 
 
Subscribe to RSS - Uniformly Distributed Load