Velocity of Flow

Problem 07 - Bernoulli's Energy Theorem

Problem 7
Compute the velocity head of the jet in Figure 4-03 if D1 = 75 mm, D2 = 25 mm, the pressure head at 1 is 30 m of the liquid flowing, and the lost head between points 1 and 2 is 5 percent of the velocity head at point 2.



Problem 06 - Bernoulli's Energy Theorem

Problem 6
As shown in Figure 4-03, the smaller pipe is cut off a short distance past the reducer so that the jet springs free into the air. Compute the pressure at 1 if Q = 5 cfs of water. D1 = 12 inches and D2 = 4 inches. Assume that the jet has the diameter D2, that the pressure in the jet is atmospheric and that the loss of head from point 1 to point 2 is 5 ft of water.



Problem 01 - Bernoulli's Energy Theorem

Problem 1
The water surface shown in Figure 4-01 is 6 m above the datum. The pipe is 150 mm in diameter and the total loss of head between point (1) in the water surface and point (5) in the jet is 3 m. Determine the velocity of flow in the pipe and the discharge Q.



02 Graph of flow velocity in tapering pipe

The diameter of a 6-m length pipe decreases uniformly from 450 mm to 150 mm. With a flow of 0.15 m3/sec of oil, compute the mean velocity at cross section 1 m apart. Plot the velocity as ordinate against length as abscissa.

Graph of velocity of flow versus length of pipe (plotted in MS Excel)



01 How to calculate the discharge and the velocity of flow

Problem 1
Compute the discharge of water through 75 mm pipe if the mean velocity is 2.5 m/sec.

Problem 2
The discharge of air through a 600-mm pipe is 4 m3/sec. Compute the mean velocity in m/sec.

Problem 3
A pipe line consists of successive lengths of 380-mm, 300-mm, and 250-mm pipe. With a continuous flow through the line of 250 Lit/sec of water, compute the mean velocity in each size of pipe.

Subscribe to RSS - Velocity of Flow