# Plane Trigonometry

The Six Trigonometric Functions
1. $\sin \theta = \dfrac{a}{c}$

2. $\cos \theta = \dfrac{b}{c}$

3. $\tan \theta = \dfrac{a}{b}$

4. $\csc \theta = \dfrac{c}{a}$

5. $\sec \theta = \dfrac{c}{b}$

6. $\cot \theta = \dfrac{b}{a}$

Trigonometric Identities
1. $\sin \theta = \dfrac{1}{\csc \theta}$

2. $\cos \theta = \dfrac{1}{\sec \theta}$

3. $\tan \theta = \dfrac{\sin \theta}{\cos \theta} = \dfrac{1}{\cot \theta}$

4. $\cot \theta = \dfrac{\cos \theta}{\sin \theta} = \dfrac{1}{\tan \theta}$

5. $\sec \theta = \dfrac{1}{\cos \theta}$

6. $\csc \theta = \dfrac{1}{\sin \theta}$

7. $\sin^2 \theta + \cos^2 \theta = 1$

8. $\tan^2 \theta + 1 = \sec^2 \theta$

9. $1 + \cot^2 \theta = \csc^2 \theta$

10. $\sin (A + B) = \sin A \, \cos B + \cos A \, \sin B$

11. $\sin (A - B) = \sin A \, \cos B - \cos A \, \sin B$

12. $\cos (A + B) = \cos A \, \cos B - \sin A \, \sin B$

13. $\cos (A - B) = \cos A \, \cos B + \sin A \, \sin B$

14. $\tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \, \tan B}$

15. $\tan (A - B) = \dfrac{\tan A - \tan B}{1 + \tan A \, \tan B}$

16. $\sin 2\theta = 2 \sin \theta \, \cos \theta$

17. $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$

18. $\tan 2\theta = \dfrac{2\tan \theta}{1 - \tan^2 \theta}$

19. $\sin \frac{1}{2}\theta = \sqrt{\dfrac{1 - \cos \theta}{2}}$

20. $\cos \frac{1}{2}\theta = \sqrt{\dfrac{1 + \cos \theta}{2}}$

21. $\tan \frac{1}{2}\theta = \dfrac{1 - \cos \theta}{\sin \theta} = \dfrac{\sin \theta}{1 + \cos \theta} = \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}}$

### patulong nmn po,sa assignment

patulong nmn po,sa assignment ko.kung pwede

### two straight line are

two straight line are perpendicular to each other an observer is on one road and 180m. from the.intersection of two roads.the line of sight from the observer to two points A and B.