Plane Trigonometry

The Six Trigonometric Functions
Right triangle with sides a, b, and c and angle theta1. $\sin \theta = \dfrac{a}{c}$

2. $\cos \theta = \dfrac{b}{c}$

3. $\tan \theta = \dfrac{a}{b}$

4. $\csc \theta = \dfrac{c}{a}$

5. $\sec \theta = \dfrac{c}{b}$

6. $\cot \theta = \dfrac{b}{a}$
 

Trigonometric Identities
1. $\sin \theta = \dfrac{1}{\csc \theta}$

2. $\cos \theta = \dfrac{1}{\sec \theta}$

3. $\tan \theta = \dfrac{\sin \theta}{\cos \theta} = \dfrac{1}{\cot \theta}$

4. $\cot \theta = \dfrac{\cos \theta}{\sin \theta} = \dfrac{1}{\tan \theta}$

5. $\sec \theta = \dfrac{1}{\cos \theta}$

6. $\csc \theta = \dfrac{1}{\sin \theta}$

7. $\sin^2 \theta + \cos^2 \theta = 1$

8. $\tan^2 \theta + 1 = \sec^2 \theta$

9. $1 + \cot^2 \theta = \csc^2 \theta$

10. $\sin (A + B) = \sin A \, \cos B + \cos A \, \sin B$

11. $\sin (A - B) = \sin A \, \cos B - \cos A \, \sin B$

12. $\cos (A + B) = \cos A \, \cos B - \sin A \, \sin B$

13. $\cos (A - B) = \cos A \, \cos B + \sin A \, \sin B$

14. $\tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \, \tan B}$

15. $\tan (A - B) = \dfrac{\tan A - \tan B}{1 + \tan A \, \tan B}$

16. $\sin 2\theta = 2 \sin \theta \, \cos \theta$

17. $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1$

18. $\tan 2\theta = \dfrac{2\tan \theta}{1 - \tan^2 \theta}$

19. $\sin \frac{1}{2}\theta = \sqrt{\dfrac{1 - \cos \theta}{2}}$

20. $\cos \frac{1}{2}\theta = \sqrt{\dfrac{1 + \cos \theta}{2}}$

21. $\tan \frac{1}{2}\theta = \dfrac{1 - \cos \theta}{\sin \theta} = \dfrac{\sin \theta}{1 + \cos \theta} = \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}}$

Comments

two straight line are

two straight line are perpendicular to each other an observer is on one road and 180m. from the.intersection of two roads.the line of sight from the observer to two points A and B.