Combined Stresses

Problem 912 | Combined Axial and Bending

Problem 912
Compute the stresses at A and B on the link loaded as shown in Figure P-912 if P = 9000 lb and F = 3000 lb.
 

912-rectangular-link.gif

 

Problem 911 | Combined Axial and Bending

Problem 911
A concrete dam has the profile shown in Figure P-911. If the density of concrete is 2400 kg/m3 and that of water is 1000 kg/m3, determine the maximum compressive stress at section m-n if the depth of the water behind the dam is h = 15 m.
 

911-gravity-dam.gif

 

Problem 910 | Combined Axial and Bending

Problem 910
A timber beam AD, 6 in. thick by 10 in. high and loaded as shown in Figure P-910, is pinned at its lower end and supported by a horizontal cable CE. Compute the maximum compressive stress developed in the beam.
 

910-boom.gif

 

Problem 909 | Combined Axial and Bending

Problem 909
The bent steel bar shown in Figure P-909 is 200 mm square. Determine the normal stresses at A and B.
 

909-bent-steel-bar.gif

 

Problem 01 | Stress in Helical Spring

Situation
The helical spring shown is axially loaded with a compression force P equal to 5 kN. The mean diameter of the spring is 100 mm and the wire used is 10 mm as indicated in the figure.

  1. What is the shear stress at A?
  2. What is the shear stress at B?
  3. On diameter AB, locate the point of zero stress measured from C.

 

001-spring-torque-plus-shear.png

 

Problem 908 | Combined Axial and Bending

 Problem 908
A punch press has the cast steel frame shown in Figure P-908. Determine the greatest force P that can be exerted at the jaws of the punch without exceeding a stress of 18 ksi at section A-B. The properties of the area are as shown and 1-1 is the centroidal axis.
 

908-punch-press.gif

 

Problem 907 | Combined Axial and Bending

Problem 907
Determine the largest load P that can be supported by the circular steel bracket shown in Figure P-907 if the normal stress on section A-B is limited to 80 MPa.
 

907-circular-bracket.gif

 

Problem 906 | Combined Axial and Bending

Problem 906
For the 2-in. by 6-in. wooden beam shown in Fig. P-906. Determine the normal stress at A and B. Are these the points of maximum normal stress? If not, where are they located and what are their values?
 

906-beam-with-inclined-load.gif

 

Problem 905 | Combined Axial and Bending

Problem 905
A wooden beam 100 mm by 200 mm, supported as shown in Figure P-905, carries a load P. What is the largest safe value of P is the maximum stress is not to exceed 10 MPa?
 

905-simple-beam-inclined-load.jpg

 

Problem 904 | Combined Axial and Bending

Problem 904
To avoid interference, a link in a machine is designed so that its cross-sectional area is reduced one half at section A-B as shown in Fig. P-904. If the thickness of the link is 50 mm, compute the maximum force P that can be applied if the maximum normal stress on section A-B is limited to 80 MPa.
 

904-link-with-area-reduced.gif

 

Pages

Subscribe to RSS - Combined Stresses