elastic diagram

Solution to Problem 677 | Midspan Deflection

Problem 677
Determine the midspan deflection of the beam loaded as shown in Fig. P-677.
 

Solution to Problem 670 | Deflections in Simply Supported Beams

Problem 670
Determine the value of EIδ at the left end of the overhanging beam shown in Fig. P-670.
 

Overhang Beam with Triangle and Moment Loads

 

Solution to Problem 669 | Deflections in Simply Supported Beams

Problem 669
Compute the value of EIδ midway between the supports of the beam shown in Fig. P-669.
 

Overhang beam with uniform loads between supports and at the overhang

 

Solution to Problem 668 | Deflections in Simply Supported Beams

Problem 668
For the beam shown in Fig. P-668, compute the value of P that will cause the tangent to the elastic curve over support R2 to be horizontal. What will then be the value of EIδ under the 100-lb load?
 

Overhang beam with point load between supports and at the free end

 

Solution to Problem 667 | Deflections in Simply Supported Beams

Problem 667
Determine the value of EIδ at the right end of the overhanging beam shown in Fig. P-667. Is the deflection up or down?
 

Overhang beam with triangular and point loads

 

Solution to Problem 665 | Deflections in Simply Supported Beams

Problem 665
Replace the concentrated load in Prob. 664 by a uniformly distributed load of intensity wo acting over the middle half of the beam. Find the maximum deflection.
 

Solution to Problem 664 | Deflections in Simply Supported Beams

Problem 664
The middle half of the beam shown in Fig. P-664 has a moment of inertia 1.5 times that of the rest of the beam. Find the midspan deflection. (Hint: Convert the M diagram into an M/EI diagram.)
 

Simple beam with different moment of inertia over the span

 

Solution to Problem 663 | Deflections in Simply Supported Beams

Problem 663
Determine the maximum deflection of the beam carrying a uniformly distributed load over the middle portion, as shown in Fig. P-663. Check your answer by letting 2b = L.
 

Uniform Load Over Middle Part of Simple Beam

 

Solution to Problem 662 | Deflections in Simply Supported Beams

Problem 662
Determine the maximum deflection of the beam shown in Fig. P-662. Check your result by letting a = L/2 and comparing with case 8 in Table 6-2. Also, use your result to check the answer to Prob. 653.
 

Simple beam with symmetrically placed uniform load

 

Solution to Problem 660 | Deflections in Simply Supported Beams

Problem 660
A simply supported beam is loaded by a couple M at its right end, as shown in Fig. P-660. Show that the maximum deflection occurs at x = 0.577L.
 

Moment load at hinged end of simple beam

 

Pages

Subscribe to RSS - elastic diagram