horizontal shear stress

Solution to Problem 583 | Design for Flexure and Shear

Problem 583
A rectangular beam 6 in. wide by 10 in. high supports a total distributed load of W and a concentrated load of 2W applied as shown in Fig. P-583. If fb ≤ 1500 psi and fv ≤ 120 psi, determine the maximum value of W.
 

Solution to Problem 582 | Design for Flexure and Shear

Problem 582
Find the cross-sectional dimensions of the smallest square beam that can be loaded as shown in Fig. P-582 if fv ≤ 1.0 MPa and fb ≤ 8 MPa.
 

Solution to Problem 581 | Design for Flexure and Shear

Problem 581
A laminated beam is composed of five planks, each 6 in. by 2 in., glued together to form a section 6 in. wide by 10 in. high. The allowable shear stress in the glue is 90 psi, the allowable shear stress in the wood is 120 psi, and the allowable flexural stress in the wood is 1200 psi. Determine the maximum uniformly distributed load that can be carried by the beam on a 6-ft simple span.
 

Solution to Problem 580 | Design for Flexure and Shear

Problem 580
A rectangular beam of width b and height h carries a central concentrated load P on a simply supported span of length L. Express the maximum fv in terms of maximum fb.
 

Design for Flexure and Shear

To determine the load capacity or the size of beam section, it must satisfy the allowable stresses in both flexure (bending) and shear. Shearing stress usually governs in the design of short beams that are heavily loaded, while flexure is usually the governing stress for long beams. In material comparison, timber is low in shear strength than that of steel.
 

Solution to Problem 577 | Horizontal Shearing Stress

Problem 577
A plywood beam is built up of 1/4-in. strips separated by blocks as shown in Fig. P-577. What shearing force V will cause a maximum shearing stress of 200 psi?
 

Solution to Problem 575 | Horizontal Shearing Stress

Problem 575
Determine the maximum and minimum shearing stress in the web of the wide flange section in Fig. P-575 if V = 100 kN. Also, compute the percentage of vertical shear carried only by the web of the beam.
 

Solution to Problem 574 | Horizontal Shearing Stress

Problem 574
In the beam section shown in Fig. P-574, prove that the maximum horizontal shearing stress occurs at layers h/8 above or below the NA.
 

Solution to Problem 573 | Horizontal Shearing Stress

Problem 573
The cross-section of a beam is an isosceles triangle with vertex uppermost, of altitude h and base b. If V is the vertical shear, show that the maximum shearing stress is 3V / bh located at the midpoint of the altitude.
 

Pages

Subscribe to RSS - horizontal shear stress