overhanging beam

Solution to Problem 619 | Double Integration Method

Problem 619
Determine the value of EIy midway between the supports for the beam loaded as shown in Fig. P-619.
 

Overhang beam with moment and uniform loads

 

Solution to Problem 617 | Double Integration Method

Problem 617
Replace the load P in Prob. 616 by a clockwise couple M applied at the right end and determine the slope and deflection at the right end.
 

Solution to Problem 616 | Double Integration Method

Problem 616
For the beam loaded as shown in Fig. P-616, determine (a) the deflection and slope under the load P and (b) the maximum deflection between the supports.
 

616-overhang-concentrated.jpg

 

Solution to Problem 615 | Double Integration Method

Problem 615
Compute the value of EI y at the right end of the overhanging beam shown in Fig. P-615.
 

Overhang beam with uniform load at the overhang

 

Solution to Problem 589 | Design for Flexure and Shear

Problem 589
A channel section carries a concentrated loads W and a total distributed load of 4W as shown in Fig. P-589. Verify that the NA is 2.17 in. above the bottom and that INA = 62 in4. Use these values to determine the maximum value of W that will not exceed allowable stresses in tension of 6,000 psi, in compression of 10,000 psi, or in shear of 8,000 psi.
 

Solution to Problem 586 | Design for Flexure and Shear

Problem 586
The distributed load shown in Fig. P-586 is supported by a box beam having the same cross-section as that in Prob. 585. Determine the maximum value of wo that will not exceed a flexural stress of 10 MPa or a shearing stress of 1.0 MPa.
 

Solution to Problem 554 | Unsymmetrical Beams

Problem 554
Determine the maximum tensile and compressive stresses developed in the overhanging beam shown in Fig. P-554. The cross-section is an inverted T with the given properties.
 

Solution to Problem 508 | Flexure Formula

Problem 508
Determine the minimum height h of the beam shown in Fig. P-508 if the flexural stress is not to exceed 20 MPa.
 

Solution to Problem 433 | Relationship Between Load, Shear, and Moment

Problem 433
Overhang beam loaded by a force and a couple as shown in Fig. P-433.

 
433-overhang-beam-point-and-moment-loads.gif

 

Solution to Problem 431 | Relationship Between Load, Shear, and Moment

Problem 431
Beam loaded as shown in Fig. P-431.

 

Pages

Subscribe to RSS - overhanging beam