Derivation of formula for volume of a frustum of pyramid/cone

SPONSORED LINKS

Frustum of a pyramid and frustum of a cone
 

Frustum of a pyramid and frustum of a cone

 

The formula for frustum of a pyramid or frustum of a cone is given by
 

$ V = \dfrac{h}{3} \left[ \, A_1 + A_2 + \sqrt{A_1A_2} \, \right] $

 

Where:
h = perpendicular distance between A1 and A2 (h is called the altitude of the frustum)
A1 = area of the lower base
A2 = area of the upper base
Note that A1 and A2 are parallel to each other.
 

Derivation:
$ V_1 = \frac{1}{3}A_1 y $

$ V_2 = \frac{1}{3}A_2 (y - h) $
 

$ V = V_1 - V_2 = \frac{1}{3}A_1 y - \frac{1}{3}A_2 (y - h) $

$ V = \frac{1}{3}A_1 y - \frac{1}{3}A_2 y + \frac{1}{3}A_2 h $

$ V = \frac{1}{3} \, \left[ \, (A_1 - A_2) y + A_2 h \right] $   →   Equation (1)
 

By similar solids (Click here for more information about Similar Solids):
$ \dfrac{A_2}{A_1} = \left( \dfrac{y - h}{y} \right)^2 $

$ \sqrt{\dfrac{A_2}{A_1}} = 1 - \dfrac{h}{y} $

$ \dfrac{h}{y} = 1 - \sqrt{\dfrac{A_2}{A_1}} = 1 - \dfrac{\sqrt{A_2}}{\sqrt{A_1}} $

$ \dfrac{h}{y} = \dfrac{\sqrt{A_1} - \sqrt{A_2}}{\sqrt{A_1}} $

$ \dfrac{y}{h} = \dfrac{\sqrt{A_1}}{\sqrt{A_1} - \sqrt{A_2}} $

$ y = \dfrac{\sqrt{A_1}}{\sqrt{A_1} - \sqrt{A_2}}\,h = \left( \dfrac{\sqrt{A_1}}{\sqrt{A_1} - \sqrt{A_2}} \, \times \, \dfrac{\sqrt{A_1} + \sqrt{A_2}}{\sqrt{A_1} + \sqrt{A_2}}\right)\,h $

$ y = \dfrac{A_1 + \sqrt{A_1A_2}}{A_1 - A_2}\,h $
 

Substitute y to Equation (1),
$ V = \frac{1}{3} \, \left[ \, (A_1 - A_2) \left( \dfrac{A_1 + \sqrt{A_1A_2}}{A_1 - A_2}\,h \right) + A_2 h \right] $

$ V = \frac{1}{3} \, \left[ \, (A_1 + \sqrt{A_1A_2})h + A_2 h \, \right] $

$ V = \frac{1}{3} \, \left[ \, A_1 + \sqrt{A_1A_2} + A_2 \, \right] \, h $

$ V = \dfrac{h}{3} \left[ \, A_1 + A_2 + \sqrt{A_1A_2} \, \right] $

 

Tags: 

SPONSORED LINKS